\'Lonely’ bacteria increase risk of antibiotic resistance

Published: 1-May-2014

Researchers at Manchester University explored the mutation rates in E. coli

Scientists from The University of Manchester in the UK have discovered that ‘lonely’ microbes are more likely to mutate, resulting in higher rates of antibiotic resistance.

The study, published in Nature Communications and jointly funded by The Wellcome Trust and the Engineering and Physical Sciences Research Council, explored the mutation rates in E. coli.

Researchers found out that the rate of mutation varied according to how many of the bacteria there were. They also discovered that more bacteria gave fewer mutations.

Meanwhile more ‘lonely’ bacteria developed greater resistance to the antibiotic Rifampicin, which is used to treat tuberculosis.

Chris Knight, joint lead author on the study with Rok Krašovec from The University of Manchester, said: 'What we were looking for was a connection between the environment and the ability of bacteria to develop the resistance to antibiotics. We discovered that the rate at which E. coli mutates depends upon how many ‘friends’ it has around. It seems that more lonely organisms are more likely to mutate.'

This change of the mutation rate is controlled by a form of social communication known as 'quorum sensing'

This change of the mutation rate is controlled by a form of social communication known as 'quorum sensing'. This involves the release of signalling molecules by bacteria when in a dense population to help the organisms understand their surrounding environment and coordinate behaviour to improve their defence mechanisms and adapt to the availability of nutrients.

Krašovec said: 'We were able to change their mutation rates by changing who they shared a test tube with, which could mean that bacteria manipulate each other’s mutation rates. It also suggests that mutation rates could be affected when bacteria are put at low densities, for instance by a person taking antibiotics.'

The rate of mutation was found to be dependent on the gene luxS, which is known to be involved in quorum sensing in a range of bacteria.

The team now hopes to find ways to control this signalling for medical applications in a future study funded by the Biotechnology and Biological Sciences Research Council.

'Eventually this might lead to interventions to control mutation rates, for instance to minimise the evolution of antibiotic resistance, allowing antibiotics to work better,' said Knight.

You may also like