Sartorius introduces mini microcarrier bioreactor

New vessel for ambr 250 ht system will enable cost-effective, scalable process development of vaccines in cell culture

Sartorius Stedim Biotech (SSB), an international supplier for the biopharmaceutical industry has launched a new mini bioreactor vessel for its ambr 250 high throughput (ht) system.

This new vessel, which is designed for optimal growth of adherent cells on microcarriers will enable rapid, scalable cell culture process development of vaccines.

The single-use mini bioreactor for microcarrier culture has a working volume of 100-250 ml and features a single Elephant Ear impeller. This impeller type generates optimum mixing and suspension of microcarriers, allowing adherent cells to grow across the entire microcarrier surface.

The new mini vessel is based on cell culture bioreactors in the ambr 250 ht system. Utilising this bioreactor on the ambr 250 ht system will allow rapid scale-up of optimised adherent cell culture processes to SSB’s Biostat STR range of pilot and manufacturing scale stirred bioreactors.

This results in shorter process development timelines than would be achieved by scientists using benchtop bioreactors and spinner flasks.

Simple to set up and use on the ambr 250 ht, this new single-use mini bioreactor minimises set-up and turnaround time. With up to 24 bioreactors per ambr 250 ht system, the technology is ideal for design of experiments (DoE) studies to optimise process development for vaccine manufacturing using a quality by design (QbD) approach.

The new vessel has been tested in collaboration with bioprocess experts at Aston University and University College London as part of an Innovate UK funded project. During these studies, all the cell culture parameters were controlled by the ambr 250 ht automated workstation. The results showed that the new microcarrier vessel design enabled growth to confluence of Vero cells on Cytodex microcarriers’ surface.

“There has been increasing interest in using microcarriers for culturing adherent cell lines in single-use stirred bioreactors as they offer a cost-effective alternative to two-dimensional approaches for vaccine production using T-flasks and roller bottles,” said Dr Barney Zoro, ambr Product Manager at Sartorius Stedim Biotech.

“We are proud to be introducing our new ambr 250 mini bioreactor for culturing adherent cells at the BPI European Summit. Scientists visiting us on Booth 47 will find out how they can use our new mini bioreactor as a predictive model to help shorten their process development timelines and reduce their vaccine manufacturing costs.”

Companies